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Abstract

It has been customary in the last few decades to employ stochastic models to represent
complex data sets encountered in geophysics, particularly in hydrology. This article re-
views a deterministic geometric procedure to data modeling, one that represents whole
data sets as derived distributions of simple multifractal measures via fractal functions.5

It is shown how such a procedure may lead to faithful holistic representations of existing
geophysical data sets that, while complementing existing representations via stochas-
tic methods, may also provide a compact language for geophysical complexity. The
implications of these ideas, both scientific and philosophical, are stressed.

1 Introduction10

The study of complex data sets is at the core of geophysical research. This has re-
sulted in the use of a variety of techniques aimed at characterizing and modeling such
sets. With the development of ideas, a variety of qualifiers (e.g. autocorrelation func-
tion, power spectrum, multifractal spectrum, probability distribution function, informa-
tion function, chaotic invariant properties, etc.) have been used for such purposes, and15

the models’ goodness has been defined in their ability to preserve such quantities.
As illustrated in Fig. 1, many data sets (e.g. rainfall and runoff time series in hydrol-

ogy) exhibit high irregularity, non-trivial intermittency, long-term persistence, power-law
power spectrum scaling and altogether “intrinsic randomness”, which suggest, in a
natural way, the usage of stochastic models, such as multiplicative cascades with ran-20

dom multipliers, to represent such “1/fβ noises” (e.g. Lovejoy and Schertzer, 1990;
Veneziano et al., 2000). The ability of the stochastic models to reasonably represent
important (statistical) characteristics of these data sets and the reasonably good pre-
dictions reported on their underlying evolutions have further strengthened our view on
the usefulness and appropriateness of such models.25

This article argues that, given the irregularity present in geophysical data sets, such
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stochastic modeling may be supplemented with chaotic and other deterministic model-
ing to provide a more complete representation of the records and processes at hand.
Besides the now classical use of phase-space reconstruction techniques (e.g. Packard
et al., 1980; Takens, 1981) developed in nonlinear dynamics to qualify the intrinsic
dimensionality of sets (e.g. Rodriguez-Iturbe et al., 1989; Tsonis et al., 1993; Sivaku-5

mar, 2000, 2004; Sivakumar et al., 2001), this article makes a case for a geometric
representation of geophysical records as derived distributions of deterministic multi-
fractal measures via simple deterministic fractal functions (Puente, 1992, 1994a), a
novel deterministic procedure that may be useful in archiving data and in elucidating
their dynamics.10

2 The fractal-multifractal procedure and geophysical applications

This deterministic geometric procedure was inspired by the simply quantized layering
of energy dissipation in fully developed turbulence (Meneveau and Sreenivasan, 1987)
and by the automatic generation of the inherent multiplicative cascade while construct-
ing fractal interpolating functions (Barnsley, 1988).15

As illustrated in Fig. 2, the fractal-multifractal procedure transforms a turbulence-
related measure (i.e., one without a density) over x, say dx, into the unique measure
dy, over y , defined as the derived distribution of dx via a fractal function f (Puente,
1992, 1994a). The ideas turned out to provide, in a way reminiscent of Plato’s notions
of “reality” as “shadows”, a host of interesting patterns over y , whose peculiar shapes20

suggested, also in a natural manner, their usage as suitable geometric models for
geophysical data sets, including rainfall (Puente, 2004).

It so happens that the time series in Fig. 1 corresponds to dy in Fig. 2. Specifically,
such a complex set is found, at any resolution, as the unique invariant measure over y
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generated by the two simple affine mappings, from the plane to the plane,

w1(x, y) =
(

1
2
x,−0.51x + d1y

)
(1)

w2(x, y) =
(

1
2
x +

1
2
,0.03x + d2y − 0.35

)
(2)

with the scaling parameters d1=−0.8 and d2=−0.6, when such mappings are iterated
in an independent fashion according to a biased coin such that w1 is used 30% of the5

time and w2 the remaining 70%. As illustrated in Fig. 2, these notions also define a
fractal function that passes by the three points {(0,0), (1/2, −0.35), (1, −0.2)} whose
graph has a fractal dimension of 1.485, and the invariant (and hence deterministic)
measure dx, as identified in turbulence studies (Puente and Obregón, 1999). As a
way of clarification, it should be emphasized that although it may appear to a casual10

reader that the obtained patterns may depend on the “coin” mentioned above, such is
not the case, since the successive iterations are just a suitable Monte Carlo approach
that always converges to the same deterministic pattern (Barnsley, 1988).

By varying the parameters of the geometric construction, that is, the points by which
a given fractal function passes (which could contain more than three points), the scal-15

ing parameters that determine the fractal dimension of the transformation, the iteration
frequencies that define a parent (multinomial) multifractal over x, and the projection
angle (other than zero degrees in the y-direction), one may indeed find a plethora of
interesting patterns sharing the observed features of natural data sets (Puente, 2004).
These resemble geophysical sets such as rainfall and width functions of natural chan-20

nels, among others (e.g. Puente and Obregón, 1996; Obregón et al., 2002; Puente and
Sivakumar, 2003) and both chaotic and stochastic signals (with 1/fβ power spectra), as
classified via phase-space reconstruction techniques (Puente et al., 2002).
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3 Scientific and philosophical implications

As the advent of chaos theory has resulted in a debate of determinism vs. stochastic-
ity as possible competing mechanisms to model natural data sets (e.g. Osborne and
Provenzale, 1989; Koutsoyiannis and Pachakis, 1996; Sivakumar, 2000; Schertzer et
al., 2002, Sivakumar et al., 2002a, b), it is pertinent to explain where the geometric5

ideas herein may fit within such a debate.
It ought to be stressed first that the fractal-multifractal procedure was not conceived

as a means to endorse determinism and hence disprove randomness, but rather as a
possible new framework for geophysical (hydrologic) complexity. The idea was devel-
oped as the first author attempted to employ extensions of fractal interpolating functions10

to represent mountain profiles from which to study the evolution of river networks (un-
successfully) and when he later realized that the natural measure generated via the
iterations over x correspond to the spiky measures found in atmospheric turbulence
and generated via deterministic multiplicative cascades. Such realization triggered the
question: if turbulence along one line is just a permutation of a rather simple multi-15

plicative cascade, could it be that rainfall and other turbulence-driven processes are
also simple enough to be transformations (fractional integrations) of such turbulence?
As seen in Fig. 2, and as illustrated in the diverse applications already mentioned and
in others, the ideas turned out to be sensible indeed in one and higher dimensions
(Puente, 1994b; Puente et al., 2001a, b), even if a complete physical explanation for20

the procedure remains a challenge.
It should also be noted that the Platonic approach has not been developed to add to

the aforementioned determinism vs. stochasticity debate, although the label of deter-
minism may suggest otherwise. That the outcomes of the fractal-multifractal approach
are deterministic is unquestionable; but they may also be interpreted, again in a natu-25

ral way, as specific realizations of existing stochastic processes, as soundly developed
elsewhere (e.g. Lovejoy and Schertzer, 1990; Veneziano et al., 2000). In this con-
text, the geometric approach provides an alternative way of generating interesting sets,
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which may be used as simulations to drive a variety of water resource applications.
Clearly, however, there are noticeable differences between such stochastic ap-

proaches and the geometric methodology explained herein. While the latter, as ap-
plied to one data set, naturally tries to find an underlying multiplicative (multinomial)
process which when fractally transformed provides a representation of a whole nor-5

malized set, stochastic approaches, by construction, concentrate on relevant statistical
properties (e.g., power spectrum, multifractal spectrum, co-dimension function) to find
a suitable cascade mechanism that may generate them as a realization. While the
classical approaches can not control the specific realization and instead concentrate
on relevant statistics of the sets, the geometric procedure, once an inverse problem is10

solved, aims at the overall geometry of the sets, one that if properly captured includes
also its statistics. This makes the geometric procedure all the more ambitious.

Although producing similar outcomes, there are two potential features of the geomet-
ric procedure (absent by definition from the more classical approaches) that we believe
deserve further study as they may result in relevant methodological breakthroughs.15

First, a Platonic methodology (similar to the one herein but defined possibly via alter-
native transformations not using affine mappings) furnishes us with the real possibility
of encoding holistically complete data sets, with rather substantial compression ratios.
This can be readily noticed in Fig. 2, as the rather complex set therein is totally de-
scribed by only 9 parameters. For, even if it is argued that the geometric approach20

uses “many more” parameters than the stochastic representations based on faithful
fittings of co-dimension functions, the latter, in its “characterization” of the record’s in-
termittency structure, can not uniquely define a given realization, which the geometric
approach can in principle do, including records that may be termed chaotic or stochas-
tic (Puente et al., 2002), as mentioned earlier.25

Second, a geometric approach may open new vistas to study the dynamics of geo-
physical processes. The evolution of records may perhaps be discerned in the com-
pressed parameter space of subsequent sets, as has been found in a contamination
problem when the geometric ideas are extended to produce complex patterns over
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two dimensions (Puente et al., 2001a, b). Notwithstanding the difficulties involved in
thinking in a surrogate space as done in other disciplines (e.g. strings in theoretical
physics), the notions may perhaps provide a dual representation for understanding dy-
namics, one that may prove useful as it has the potential of capturing the ever important
details (i.e., timing and magnitude) present in the data sets at hand.5

Whether simplicity can be found at the root of complexity remains a tremendous
challenge in science (see, however, Wainright and Mulligan (2004) for a similar issue
in environmental modeling). Undoubtedly, geophysical complexity is very hard to quan-
tify and as such there are, no doubt, opportunities for further improvement. In regards
to the geometric ideas herein, more research is needed in trying to solve a complex10

inverse optimization problem and in finding ways by which physical knowledge, as de-
fined via conservation principles and differential equations, may be coupled with the
geometric ideas. It is our hope that such issues will have a successful ending.

4 Conclusions

A geometric procedure aimed at modeling complex geophysical data sets as derived15

distributions of multifractal measures via fractal functions has been reviewed. It has
been argued, both scientifically and philosophically, that such an approach may provide
a suitable language for geophysical complexity, one that may be useful to simulate
distinct phenomena of diverse types and one that one day may lead to a new vision to
study geophysical dynamics.20
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Fig. 1. A prototypical complex data set made of 212 data points, followed by its autocorrelation
function and its (log-log) power spectrum, with scaling exponent β=1.27.
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Fig. 2. An example of the fractal-multifractal procedure. The measure dy is obtained adding
the corresponding values of dx for horizontal crossings of the mapping f .
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